2 resultados para Interleukin-4

em WestminsterResearch - UK


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Three closely related human sec14p-like proteins (hTAP1, 2, and 3, or SEC14L2, 3, and 4, respectively) have been described. These proteins may participate in intracellular lipid transport (phospholipids, squalene, tocopherol analogues and derivatives) or influence regulatory lipid-dependent events. Here, we show that the three recombinant hTAP proteins associate with the Golgi apparatus and mitochondria, and enhance the in vitro transport of radioactively labeled α-tocopherol to mitochondria in the same order of magnitude as the human α-tocopherol transfer protein (α-TTP). hTAP1 and hTAP2 are expressed in several cell lines, whereas the expression level of hTAP3 is low. Expression of hTAP1 is induced in human umbilical cord blood-derived mast cells upon differentiation by interleukin 4. In tissues, the three hTAPs are detectable ubiquitously at low level; pronounced and localized expression is found for hTAP2 and hTAP3 in the perinuclear region in cerebellum, lung, liver and adrenal gland. hTAP3 is well expressed in the epithelial duct cells of several glands, in ovary in endothelial cells of small arteries as well as in granulosa and thecal cells, and in testis in Leydig cells. Thus, the three hTAPs may mediate lipid uptake, secretion, presentation, and sub-cellular localization in a tissue-specific manner, possibly using organelle- and enzyme-specific docking sites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ntroduction: Osteoarthritis (OA) is a degenerative joint disease affecting more than 8.5 million people in the UK. Disruption in the catabolic and anabolic balance, with the catabolic cytokine Interleukin 1 beta (IL-1β) being involved in the initiation and progression of OA (1). Melanocortin peptides (α-MSH and D[Trp8]-γ-MSH) exert their anti-inflammatory effects via activation of melanocortin receptors (MC), with both MC1 and MC3 being identified as promising candidates as novel targets for OA (2). This study aims to assess the chondroprotective and anti-inflammatory effects of the pan melanocortin receptor agonist α-MSH and MC3 agonist D[Trp8]-γ-MSH following IL-1β chondrocyte stimulation. Methods: RT-PCR/ Western Blot: Human C-20/A4 chondrocytic cell-line were cultured in 6 well plates (1x106 cells/well) and harvested to determine MC and IL-1β expression by RT-PCR, and Western Blot. Cell-Culture: Cells were cultured in 96 well plates (1x106 cells/well) and stimulated with H2O2 (0.3%), TNF-α (60 pg/ml) or IL-1β (0-5000pg/ml) for 0-72h and cell viability determined. Drug Treatment: In separate experiments cells were pre-treated with 3 μg/ml α-MSH (Sigma-Aldrich Inc. Poole, UK), or D[Trp8]-γ-MSH (Phoenix Pharmaceuticals, Karlsrhue, Germany) (all dissolved in PBS) for 30 minutes prior to IL-1β (5000pg/ml) stimulation for 6-24h. Analysis: Cell viability was determined by using the three cell viability assays; Alamar Blue, MTT and the Neutral Red (NR) assay. Cell-free supernatants were collected and analysed for Interleukin -6 (IL-6) and IL-8 release by ELISA. Data expressed as Mean ± SD of n=4-8 determination in quadruplicate. *p≤ 0.05 vs. control. Results: Both RT-PCR, and Western Blot showed MC1 and MC3 expression on C-20/A4 cells. Cell viability analysis: IL-1β stimulation led to a maximal cell death of 35% at 6h (Alamar Blue), and 40% and 75% with MTT and Neutral Red respectively at 24h compared to control. The three cell viability assays have different cellular uptake pathways, which accounts for the variations observed in cell viability in response to the concentration of IL-1β, and time. Cytokine analysis by ELISA: IL-1β (5000pg/ml) stimulation for 6 and 24h showed maximal IL-6 production 292.3 ±3.8 and 275.5 ±5.0 respectively, and IL-8 production 353.3 ±2.6 and 598.3 ±8.6 respectively. Pre-treatment of cells with α-MSH and D[Trp8]-γ-MSH caused significant reductions in both IL-6 and IL-8 respectively following IL-1β stimulation at 6h. Conclusion: MC1/3 are expressed on C-20/A4 cells, activation by melanocortin peptides led to an inhibition of IL-1β induced cell death and pro-inflammatory cytokine release.